Electrocatalytic H2 production from seawater over Co, N-codoped nanocarbons.
نویسندگان
چکیده
One of the main barriers blocking sustainable hydrogen production is the use of expensive platinum-based catalysts to produce hydrogen from water. Herein we report the cost-effective synthesis of catalytically active, nitrogen-doped, cobalt-encased carbon nanotubes using inexpensive starting materials-urea and cobalt chloride hexahydrate (CoCl2·6H2O). Moreover, we show that the as-obtained nanocarbon material exhibits a remarkable electrocatalytic activity toward the hydrogen evolution reaction (HER); and thus it can be deemed as a potential alternative to noble metal HER catalysts. In particular, the urea-derived carbon nanotubes synthesized at 900 °C (denoted as U-CNT-900) show a superior catalytic activity for HER with low overpotential and high current density in our study. Notably also, U-CNT-900 has the ability to operate stably at all pH values (pH 0-14), and even in buffered seawater (pH 7). The possible synergistic effects between carbon-coated cobalt nanoparticles and the nitrogen dopants can be proposed to account for the HER catalytic activity of U-CNT-900. Given the high natural abundance, ease of synthesis, and high catalytic activity and durability in seawater, this U-CNT-900 material is promising for hydrogen production from water in industrial applications.
منابع مشابه
Fluorophenyl-substituted Fe-only hydrogenases active site ADT models: different electrocatalytic process for proton reduction in HOAc and HBF4/Et2O.
A set of fluorophenyl-substituted adt-bridged Fe2S2 active site models of Fe-only hydrogenase, [(micro-SCH2)2NR]Fe2(CO)6 (, R=C6F4CF3-p; , R=C6H4CF3-p) and [(micro-SCH2)2NR]Fe2(CO)5(PPh3) (, R=C6F4CF3-p; , R=C6H4CF3-p), have been synthesized and well characterized. Spectroscopic and electrochemical studies demonstrate that the aryl-substituted complexes are stable toward a strong acid HBF4/Et2O...
متن کاملA molecular material based on electropolymerized cobalt macrocycles for electrocatalytic hydrogen evolution.
An electrocatalytic material for the H2 evolution reaction (HER) in acidic aqueous solution has been prepared by electropolymerization of Co(ii) dibenzotetraaza[14] annulene (CoTAA). Chemical analysis by X-ray photoelectron spectroscopy (XPS) confirms that the structural integrity of the [Co(II)-N4] motif is preserved in the poly-CoTAA film. In acetate buffer solution at pH 4.6, an overpotentia...
متن کاملElectrocatalytic generation of H2 from neutral water in acetonitrile using manganese polypyridyl complexes with ligand assistance.
A Mn(i) tris(2-pyridylmethyl)amine complex fac-[Mn(κ3-tpa) (CO)3]+OTf- carries out electrocatalytic hydrogen evolution from neutral water in acetonitrile. Bulk electrocatalytic studies showed that the catalyst functions with a moderate Faradaic efficiency and turn over frequency. DFT computations support the role of the tpa ligand as a shuttle to transfer of protons to the metal center.
متن کاملUse of carbon monoxide and hydrogen by a bacteria–animal symbiosis from seagrass sediments
The gutless marine worm Olavius algarvensis lives in symbiosis with chemosynthetic bacteria that provide nutrition by fixing carbon dioxide (CO2 ) into biomass using reduced sulfur compounds as energy sources. A recent metaproteomic analysis of the O. algarvensis symbiosis indicated that carbon monoxide (CO) and hydrogen (H2 ) might also be used as energy sources. We provide direct evidence tha...
متن کاملMetal-organic frameworks for electrocatalytic reduction of carbon dioxide.
A key challenge in the field of electrochemical carbon dioxide reduction is the design of catalytic materials featuring high product selectivity, stability, and a composition of earth-abundant elements. In this work, we introduce thin films of nanosized metal-organic frameworks (MOFs) as atomically defined and nanoscopic materials that function as catalysts for the efficient and selective reduc...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Nanoscale
دوره 7 6 شماره
صفحات -
تاریخ انتشار 2015